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We present a new method for incorporating arbitrarily strong static homogeneous
external magnetic fields into molecular dynamics computer simulations. Conven-
tional techniques dealing with magnetic fields demand the simulation time step1t
to be small compared to the Larmor oscillation time 2π/Ä. In our method, in con-
trast, the magnetic field is built into the propagation equations in such a way as to
make the choice of1t entirely independent of 2π/Ä. Thus, the time step is deter-
mined only by the internal physical properties of the system under consideration.
This property of our method is essential for simulating strongly magnetized systems
of charged particles in an efficient way. The method is developed in the framework
of the second-order Velocity Verlet propagation scheme. However, the underlying
concept is independent of this choice, and a generalization to arbitrary order without
any reference to a specific propagation scheme is also given.c© 1999 Academic Press

1. INTRODUCTION

At its very heart, classical (i.e., non-quantum-mechanical and nonrelativistic) molecular
dynamics (MD) is the problem of numerically solving Newton’s equations of motion for
a system of many particles interacting with each other, possibly under the influence of
external fields.

Here we consider systems of charged particles exposed to a static (i.e., time-independent)
homogeneous external magnetic field. Implementing an external magnetic field into a MD
simulation is not difficult a priori, but since MD follows the trajectory of each individual
simulation particle, the time step1t of the simulation has to be chosen small enough to have
a sufficient number of steps per Larmor oscillation in order to follow the spiralling motion
of the particles correctly: A particle of specific chargeq/m performs Larmor oscillations of
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frequencyÄ=q B/m when influenced by a magnetic fieldB. The condition for the choice
of 1t in a straightforward implementation is therefore

Ä1t
!¿ 2π. (1)

When the magnetic field is weak, i.e., when the time scaleτint defined by the interactions
within the system itself is small compared to 2π/Ä, the choice of1t is dominated byτint,
and (1) is automatically fulfilled:1t

!¿ τint ¿ 2π/Ä. At strong magnetic field, however,
where 2π/Ä ¿ τint, the MD simulation would have to perform a huge number of very
small time steps to cover time intervals of the order ofτint while obeying (1), and it would
thus be numerically very expensive to simulate the internal evolution of the system under
the influence of a strong magnetic field.

The aim of this paper is to present a numerical algorithm which allows one to simulate
systems of charged particles under the influence of strong static external magnetic fields
without having to fulfill condition (1); i.e., there may be an arbitrary number of Larmor
oscillations per time step, yet still the particle trajectory is sampled correctly to within the
order of the propagation scheme. Consequently, the time step is limited only by the bold
internal physical restriction1t

!¿ τint, independently of the size of the external 2π/Ä time
scale.

Hence, in the context of this paper, a magnetic field shall be called “strong” if it is
desirable for reasons of numerical efficiency to use an algorithm which is not restricted to
condition (1).

Owing to the widespread use of the Velocity Verlet (VV) propagation scheme in MD
codes, we will develop this algorithm within the VV framework, but the concept is more
general and independent of the actual propagation scheme.

This paper is organized as follows:

• First, we briefly outline the basic concepts of the VV (Section 2).
• In Section 3 we show that the VV has to be modified to allow for magnetic fields, and

we present three different ways of doing so.
• A numerical example (Section 4) serves to compare these modifications.
• We finally show (Section 5) how the algorithm presented here can be incorporated into

propagation schemes of arbitrary order.

2. THE VELOCITY VERLET ALGORITHM

Let N be the number of particles in the system. The positions, velocities, and accelerations
of the particles at timet are given by the three-dimensional vectorsr i (t), vi (t), andai (t),
respectively. The particle indexi (i = 1, 2, . . . , N) will be omitted in formulae which apply
to all particles independently. The components of the vectors are referred to by subscripts
x, y, andz.

Sincev = dr/dt anda = dv/dt, we can write Newton’s equations as a system of 6N
first-order ordinary differential equations,

ṙ i ≡ d

dt
r i = vi (2)

v̇i ≡ d

dt
vi = ai = Fi

mi
, (3)
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wheremi is the mass of particlei , andFi is the force acting on particlei . In the most general
case,ai can be a function of all particle positions and velocities, and it may be explicitly
time-dependent.

Among the variety of numerical algorithms for solving systems of first-order ordinary
differential equations [1–5], the VV scheme [5, p. 81] is one of the most popular for MD
simulations. In the notation of this paper it can be written as

r(t +1t) = r(t)+1tv(t)+ 1
2(1t)2a(t)+ O((1t)3) (4)

a(t +1t) = a(r1(t +1t), . . . , r N(t +1t); v1(t +1t), . . . , vN(t +1t); t +1t) (5)

v(t +1t) = v(t)+ 1
21t [a(t)+ a(t +1t)] + O((1t)3). (6)

At first glance, this seems to be an implicit scheme, as references tot + 1t appear on
both sides of Eq. (6). However, in many simple MD problems without external magnetic
fields, the particle accelerations do not depend on the particle velocities, allowing (5) to be
replaced by

a(t +1t) = a(r1(t +1t), . . . , r N(t +1t); t +1t). (7)

The order of evaluation of Eqs. (4), (6), and (7) is now crucial: At timet , we can calculate
r(t + 1t) through Eq. (4), thena(t + 1t) using (7), and finallyv(t + 1t) via (6). The
implicit character of Eq. (6) thus disappears when the special structure (7) applies for the
acceleration. In this case, the VV

• is explicit, i.e., without reference into the future: The system at timet + 1t can be
calculated directly from quantities known at timet .
• is self-starting, i.e., without reference into the far past: The system at time1t can be

calculated directly knowing only the system at timet = 0.
• allows1t to be chosen differently for each time step. This can be very useful when

the accelerations vary strongly over time, as is often the case in the simulation of Coulomb
systems. For details on how to choose1t adaptively, cf. [2, p. 714].
• is a second-order integration scheme; i.e., the error term isO((1t)3).
• is time reversal invariant and symplectic [6–8].
• requires only one evaluation of the accelerations per time step.

Since calculating the accelerations is usually the most time-consuming part of a MD simu-
lation code, its combination of advantageous features makes the VV the algorithm of choice
for a wide range of MD applications.

3. VELOCITY VERLET AND MAGNETIC FIELD

In the presence of a magnetic field acting on charged particles, the accelerations explicitly
depend on the velocities. Consequently, (7) no longer holds, and the VV is reduced to the
implicit scheme (4)–(6). However, in the case of a static homogeneous external magnetic
field acting on a system which would fulfill (7) if the external field were absent, the VV can
be modified to restore the explicit character.

With a homogeneous magnetic fieldB = (0, 0, B) pointing in thez direction, the accel-
eration on each particle is

a(t) = aC(t)−Äez× v(t), (8)
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whereaC is the part of the acceleration which does not depend on the velocities,

aC(t) = aC(r1(t), . . . , r N(t); t), (9)

Ä = q B/m is the Larmor frequency, andez= (0, 0, 1) is the unit vector in thez direction.
To simplify notation, we will assume a system where all the particles have the same charge-
to-mass ratioq/m. The argumentation can easily be extended to individual valuesÄi =
qi B/mi per particle.

An important example foraC is aC = qE/m, whereE is the electric field acting on the
particle due to the pairwise Coulomb interactions within theN-particle system.

In the following subsections of this section, we present three different approaches to
putting a magnetic field into the VV, which we shall call “inversion ofez × v,” “Taylor
expansion,” and “velocity transformation.”

We will find that inversion is valid only for weak magnetic fields, whereas the other two,
by their very construction, apply for arbitrary magnetic field strengths. Second, Taylor ex-
pansion is equivalent to velocity transformation to within terms of orderO((1t)3). Finally,
we will show that in the weak field limit all three approaches are consistent with each other.

3.1. Inversion of ez× v

Using the structure (8) of the acceleration with magnetic field, we can write the VV
system (4)–(6) in a different way:

r(t +1t) = r(t)+1t v(t)+ 1
2(1t)2

[
aC(t)−Äez× v(t)

]+ O((1t)3) (10)

aC(t +1t) = aC(r1(t +1t), . . . , r N(t +1t); t +1t) (11)

v(t +1t) = v(t)+ 1
21t

[
aC(t)−Äez× v(t)+ aC(t +1t)

−Äez× v(t +1t)
]+ O((1t)3). (12)

Since the cross productez × v only mixes thevx andvy components within each of the
individual particles in a linear way, (12) is a set of three linear equations per particle, which
can easily be solved forv(t +1t) explicitly:

vx(t +1t) = 1

1+ 1
4(Ä1t)2

{
vx(t)+ 1

21t
[
aC

x (t)+ aC
x (t +1t)+ 2Ävy(t)

]
+ 1

4(1t)2Ä
[
aC

y (t)+ aC
y (t +1t)−Ävx(t)

]}+ O((1t)3) (13)

vy(t +1t) = (like (13), exchangex↔ y, replaceÄ→−Ä) (14)

vz(t +1t) = vz(t)+ 1
21t

[
aC

z (t)+ aC
z (t +1t)

]+ O((1t)3). (15)

Equations (10), (11), and (13)–(15) are an explicit, symplectic, and time reversal invariant
algorithm including the magnetic field.

However, it can be seen that this algorithm becomes inefficient for a strong magnetic
field; i.e., it fails for time steps of the order of 2π/Ä. For example, the most simple case of
closed circular motion whenaC ≡ 0 andvz(0)= 0 is not reproduced using Eqs. (10), (11),
and (13)–(15) with a time step1t = 2π/Ä.

A more geometric rather than our algebraic derivation of (13)–(15) is given in [3, p. 58
ff.; 4, p. 111 ff.]; however, they do not write down the actual result (13)–(15) explicitly.
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Reference [3, p. 59] states that this algorithm has “less than one percent error forÄ1t <
0.35.” This is consistent with our numerical results in Section 4.

For purposes of comparison in Section 3.2.2, we cast Eqs. (13)–(15) into an alternative
form by expanding [1+ 1

4(Ä1t)2]−1 with respect to1t :

vx(t +1t) = vx(t)+ 1
21t

[
aC

x (t)+ aC
x (t +1t)+ 2Ävy(t)

]
+ 1

4(1t)2Ä
[
aC

y (t)+ aC
y (t +1t)− 2Ävx(t)

]+ O((1t)3) (16)

vy(t +1t) = (like (16), exchangex↔ y, replaceÄ→−Ä) (17)

vz(t +1t) = vz(t)+ 1
21t

[
aC

z (t)+ aC
z (t +1t)

]+ O((1t)3). (18)

3.2. Taylor Expansion

3.2.1. Taylor Expansion Algorithm

Let us now explicitly assume that the magnetic field is arbitrarily strong; i.e.,Ä1t ¿ 2π
no longer holds, where the inversion algorithm was found to fail. Consider the Taylor series
for r(t +1t),

r(t +1t) = r(t)+1t v(t)+
∞∑

n=2

(1t)n

n!

dn−2

dtn−2
a(t), (19)

wherea(t) is given in (8). Instead ofÄ1t¿ 2π , we assume thatÄ1t =O((1t)0) or

Ä = O((1t)−1)⇒ a= O((1t)−1), (20)

while we still have

r , v, aC,
dn

dtn
aC = O((1t)0). (21)

Under these assumptions, we will

a. show that (19) is no longer properly sorted in ascending orders of1t ;
b. expand the general term of (19) in orders of1t ; and
c. perform the

∑∞
n=2 for the first and second order of1t as obtained in step b.

This will result in a new arrangement of the summation terms in (19) which is properly
sorted in orders of1t with a remainderO((1t)3), and which must therefore replace (4) in
the VV.

An analogous procedure will then have to be carried out with the series

v(t +1t) = v(t)+1ta(t)+
∞∑

n=2

(1t)n

n!

dn−1

dtn−1
a(t), (22)

replacing (6).
a. The general term of the infinite sum in (19) is

(1t)n

n!

dn−2

dtn−2
a(t). (23)
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Sincea= aC−Äez× v anda= dv/dt, we have

dn−2

dtn−2
a = dn−2

dtn−2
aC−Äez× dn−2

dtn−2
v

= dn−2

dtn−2
aC−Äez× dn−3

dtn−3
a. (24)

By induction, we can derive

dn−2

dtn−2
a= O((1t)−n+1)

from (20), (21), and (24), and therefore the order of the general term (23) is

(1t)n

n!

dn−2

dtn−2
a(t) = O((1t)n)O((1t)−n+1) = O((1t)1),

so clearly the Taylor series (19) is no longer sorted in ascending orders of1t , as every
single term isO((1t)1).

b. Having found that (23) is of the orderO((1t)1), we now proceed to explicitly calculate
its1t and(1t)2 components. Thez component of Eq. (19) is unaffected by the magnetic
field. To deal with the action of the cross product on thex andy components in a convenient
way, we introduce a complex notation by the mapping

M: R3→ C; b 7→ b = bx + iby, (25)

whereb ∈ R3 is an arbitrary three-dimensional vector.M maps the cross productez × b
into a simple multiplication:ez × b 7→ −by + ibx = ib.M is not bijective, but as long
as we only consider cross products withez, we know that thez component of the result is
zero, and we can define an inverse mapping by

M−1: C→ R3; b = <b+ i=b 7→ b = (<b,=b, 0). (26)

Equation (24) is thus mapped into

dn−2

dtn−2
a = dn−2

dtn−2
aC− iÄ

dn−3

dtn−3
a. (27)

Recursively putting (27) into itself(n− 3) times and finally applying (8), we obtain

dn−2

dtn−2
a = dn−2

dtn−2
aC− iÄ

{
dn−3

dtn−3
aC− iÄ

[
dn−4

dtn−4
aC · · · − iÄ(aC− iÄv)

]}
.

AsaC, v=O((1t)0) andÄ=O((1t)−1), we can find the lowest orders of1t by collecting
the highest orders ofÄ:

dn−2

dtn−2
a = (−iÄ)n−1v + (−iÄ)n−2aC+

n−2∑
k=1

(−iÄ)n−2−k dk

dtk
aC

= (−iÄ)n−1v + (−iÄ)n−2aC+ O((1t)3−n).
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The general term (23) is now

(1t)n

n!

dn−2

dtn−2
a = (−iÄ1t)n

n!

(
v

−iÄ
+ aC

(−iÄ)2

)
+ O((1t)3).

c. This result can finally be put into the original Taylor expansion (19), yielding, in
complex notation,

r (t +1t) = r (t)+1tv(t)+
∞∑

n=2

[
(−iÄ1t)n

n!

(
v(t)

−iÄ
+ aC(t)

(−iÄ)2

)
+ O((1t)3)

]

= r (t)+1tv(t)+ [exp(−iÄ1t)− 1+ iÄ1t ]

(
v(t)

−iÄ
+ aC(t)

(−iÄ)2

)
+O((1t)3).

We now applyM−1 to retrieve thex andy components, while the propagation formula
for thez component remains unchanged,

rx(t +1t) = rx(t)+ 1

Ä
[vx(t) sin(Ä1t)− vy(t)C(Ä1t)]

+ 1

Ä2

[−aC
x (t)C(Ä1t)− aC

y (t)S(Ä1t)
]+ O((1t)3) (28)

r y(t +1t) = (like (28), exchangex↔ y, replaceÄ→−Ä) (29)

rz(t +1t) = rz(t)+1tvz(t)+ 1
2(1t)2aC

z (t)+ O((1t)3), (30)

where we have defined

S(Ä1t) ≡ sin(Ä1t)−Ä1t (31)

C(Ä1t) ≡ cos(Ä1t)− 1. (32)

The analogous expansion of (22) is done in Appendix A. The result is

vx(t +1t) = vx(t) cos(Ä1t)+ vy(t) sin(Ä1t)+ 1

Ä

[−aC
y (t)C(Ä1t)

+aC
x (t) sin(Ä1t)

]+ 1

Ä2

[
−aC

x (t +1t)− aC
x (t)

1t
C(Ä1t)

− aC
y (t +1t)− aC

y (t)

1t
S(Ä1t)

]
+ O((1t)3) (33)

vy(t +1t) = (like (33), exchangex↔ y, replaceÄ→−Ä) (34)

vz(t +1t) = vz(t)+ 1
21t

[
aC

z (t)+ aC
z (t +1t)

]+ O((1t)3). (35)

The set (28)–(30), (11), and (33)–(35) of propagation equations is now a proper second-
order integration algorithm at arbitraryÄ1t which is not restricted toÄ1t¿ 2π . Note
that these propagation equations do not refer toa, but only toaC; i.e., the magnetic field
is entirely incorporated into the propagation equations. Irrespective of the strength of the
magnetic field, the choice of the time step1t is now determined only by the time scale
imposed byaC, i.e., by the internal physical properties of the system under consideration.
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However, this Taylor expansion algorithm is not invariant under time reversal, and the
determinant of the Jacobian is 1+O((1t)4) in cases whereaC is generated by a conservative
force (i.e.,∇ × aC= 0), and 1+ O((1t)2) otherwise.

3.2.2. Weak Field Limit

In the limit Ä1t¿ 1, the trigonometric functions in Eqs. (28)–(29) and (33)–(34) can
be expanded into their power series up to and including terms of the orderO((Ä1t)2),
yielding

rx(t +1t) = rx(t)+1tvx(t)+ 1
2(1t)2

[
aC

x (t)+Ävy(t)
]+ O((1t)3) (36)

r y(t +1t) = (like (36), exchangex↔ y, replaceÄ→−Ä) (37)

rz(t +1t) = rz(t)+1tvz(t)+ 1
2(1t)2aC

z (t)+ O((1t)3), (38)

which is precisely ther propagation equation (10), and

vx(t +1t) = vx(t)+ 1
21t

[
aC

x (t)+ aC
x (t +1t)+ 2Ävy(t)

]
+ 1

4(1t)2Ä
[

4
3aC

y (t)+ 2
3aC

y (t +1t)− 2Ävx(t)
]+ O((1t)3) (39)

vy(t +1t) = (like (39), exchangex↔ y, replaceÄ→−Ä) (40)

vz(t +1t) = vz(t)+ 1
21t

[
aC

z (t)+ aC
z (t +1t)

]+ O((1t)3), (41)

which looks subtly different from (16)–(17) due to the4
3 and 2

3 weights in the(1t)2 terms
of (39)–(40). However, this is not a true difference to within orderO((1t)3): Substituting
aC

y (t + 1t) = aC
y (t) + 1t daC

y (t)/dt + O((1t)2) into either (39) or (16) yields in both
cases

vx(t +1t) = vx(t)+ 1
21t

[
aC

x (t)+ aC
x (t +1t)+ 2Ävy(t)

]
+ 1

4(1t)2Ä
[
2aC

y (t)− 2Ävx(t)
]+ O((1t)3).

Furthermore, atÄ = 0, the Taylor expansion algorithm simplifies into the field-free VV
(4), (9), and (6).

This clearly shows that the Taylor expansion algorithm (and, equivalently, the velocity
transformation algorithm to be presented in the following section) is the most general
implementation of a static homogeneous external magnetic field in the VV algorithm.

3.3. Velocity Transformation

In this section we introduce a slightly more physical approach inspired by classical
electrodynamics which reproduces the propagation equations (28)–(30) and (33)–(35) from
a different point of view, and which also yields an elegant generalization to arbitrary order.

Again, we consider anN-particle system under the influence of a static homogeneous ex-
ternal magnetic field, with the acceleration on the particles given by Eq. (8). Here, however,
we first solve the velocity propagation equations to desired accuracy, and then we obtain
the corresponding equations for the particle position by integration:

r(t +1t) = r(t)+
∫ t+1t

t
v(t ′) dt′. (42)
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In the following, we first review the harmonic oscillator solution obtained for non-
interacting particles affected only by a magnetic field. As a next step, a time-independent
accelerationaC= const. is incorporated by means of a transformation in velocity space.
Finally, we present a generalization of this transformation suitable for time-dependent ac-
celerationsaC(t) and derive propagation equations from this transformation.

3.3.1. Simple Harmonic Oscillator Motion

A multiparticle system ofN particles without interaction between the particles (i.e.,
aC= 0) can be described byN independent equations of motion. Therefore it suffices
to solve the equation of motion of one single particle. In this case, Eq. (8) simplifies to
a(t) = v̇(t)=−Äez × v(t). Thevz equation isv̇z(t)= 0, yieldingvz(t)= vz(0)= const.
Thevx andvy equations can be combined using the complex mapping (25),

v̇(t) = −iÄv(t), (43)

which is the differential equation of the simple harmonic oscillator. Givenv(t) andr (t) at
some timet , we thus knowv(t +1t) analytically:

v(t +1t) = v(t) exp(−iÄ1t). (44)

Rewriting this equation asv(t ′) = v(t) exp[−iÄ(t ′ − t)] and integrating it according to
(42) leads to

r (t +1t) = r (t)+ i

Ä
v(t)[exp(−iÄ1t)− 1].

The particles move with constant velocityvz along the direction of the magnetic field (thez

direction) and gyrate aroundB with the Larmor radiusrL = v⊥/Ä (wherev⊥ =
√
v2

x + v2
y=

const.) and the Larmor frequencyÄ. If desired, the inverse mapping (26) provides propa-
gation equations.

3.3.2. Static Acceleration

In a second step we will assume that the interaction between theN particles can be
approximated by a time-independent, homogeneous accelerationaC(t) = aC = const. per
particle during one time step. Now we have to take into account all terms of (8) and the
equations of motion become, in complex notation forvx andvy,

v̇(t) = −iÄv(t)+ aC (45)

v̇z(t) = aC
z . (46)

Equations (45) looks quite similar to (43), except for the additional term caused by the
static acceleration. However, by means of a suitable velocity transformation, the equation of
motion (45)–(46) can be cast into the simple harmonic oscillator form. This is accomplished
by

ṽ(t) = v(t)+ i

Ä
aC (47)

ṽz(t) = vz(t). (48)
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For a physical interpretation of this transformation, see Appendix C. Note thatvz is not
influenced and Eq. (46) is solved byvz(t +1t) = vz(t)+1taC

z . The transformation (47)
yields ˙̃v(t) = −iÄ ṽ(t), as desired. This can immediately be solved and backtransformed,
resulting in

v(t +1t) =
(
v(t)+ i

Ä
aC

)
exp(−iÄ1t)− i

Ä
aC,

and integration (42) leads to

r (t +1t) = r (t)+ i

Ä

(
v(t)+ i

Ä
aC

)
[exp(−iÄ1t)− 1]− i

Ä
aC1t.

Again, propagation equations can be derived from these results with the inverse mapping
(26). These propagation equations are the same as (28)–(30) and (33)–(35) except for the
finite differencesaC(t + 1t) − aC(t) in the second-order terms of (33)–(34): The finite
differences vanish here sinceaC is assumed to be constant. Thus we find that under this
assumption we arrive at a propagation scheme which is second order inr , but only first
order inv, which would not be efficient for MD simulation purposes in the VV framework.
In order to obtain propagation algorithms of arbitrary orderk, the time evolution of the
acceleration has to be taken into account.

3.3.3. Generalized Velocity Transformation

Let us first focus on thex andy directions. We start from

v̇(t +1t) = −iÄv(t +1t)+ aC(t +1t)

(cf. Eq. (45), withaC time-dependent), and put in the Taylor series foraC(t +1t),

aC(t +1t) =
k∑

n=0

(1t)n

n!

dn

dtn
aC(t)+ O((1t)k+1),

to arrive at

v̇(t +1t) = −iÄv(t +1t)+
k∑

n=0

(1t)n

n!

dn

dtn
aC(t)+ O((1t)k+1). (49)

The aim is now once more to find a transformation of the velocityv→ ṽ which simplifies
(49) to a harmonic oscillator equation˙̃v(t +1t) = −iÄ ṽ(t +1t) + O((1t)k+1) within
the orderO((1t)k+1). This is provided by

ṽ(t +1t) = v(t +1t)+
k∑

n=0

[(
i

Ä

)n+1( dn

dtn
aC(t)

) n∑
m=0

(−iÄ1t)m

m!

]
. (50)

An analytic proof of this property is given in Appendix B. The solution is ˜v(t + 1t) =
ṽ(t) exp(−iÄ1t) as in (44); after backtransformation with respect to (50) and integration
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according to (42) we get

v(t +1t) = v(t) exp(−iÄ1t)+
k−1∑
n=0

[(
i

Ä

)n+1( dn

dtn
aC(t)

)
expn(−iÄ1t)

]
+O((1t)k+1) (51)

r (t +1t) = r (t)+
k−1∑
n=0

[(
i

Ä

)n+1( dn

dtn
v(t)

)
expn(−iÄ1t)

]
+ O((1t)k+1), (52)

with the definition expn(x) ≡ exp(x)−
n∑

m=0

xm

m! . As usual, the inverse mapping (26) provides

thex andy propagation equations. The appropriate propagation equations forrz andvz to
the same order are

vz(t +1t) = vz(t)+
k−1∑
n=0

(
dn

dtn
aC

z (t)

)
(1t)n+1

(n+ 1)!
+ O((1t)k+1) (53)

rz(t +1t) = rz(t)+1tvz(t)+
k−2∑
n=0

(
dn

dtn
aC

z (t)

)
(1t)n+2

(n+ 2)!
+O((1t)k+1). (54)

The derivativesdnaC(t)/dtn must be provided by the actual propagation scheme; they
have to be known at least up to and including orderO((1t)k−n−2) andO((1t)k−n−1) for
ther andv propagation equations, respectively.

For example, if we choosek = 2 and

d

dt
aC(t) = aC(t +1t)− aC(t)

1t
+ O((1t)1),

Eqs. (51)–(52) and (53)–(54) are exactly the same as (28)–(30) and (33)–(35) in Section 3.2;
i.e., the Taylor expansion and velocity transformation approaches arrive at the same results
for the VV algorithm including a static homogeneous external magnetic field; both are valid
for arbitrarily strong magnetic fields.

4. NUMERICAL EXAMPLE

To give an illustration of the performance of the algorithms presented in Section 3, we
calculate the trajectory of one single particle in an attractive Coulomb-like central potential
−|r |−1 under the influence of a static homogeneous external magnetic field.

At t = 0, the dimensionless particle position and velocity vectors are arbitrarily chosen to
ber(0) = (−1, 0, −1) andv(0) = (0, 1, 0.1), respectively. The acceleration of the particle
is given by

a= −Äez× v− r
|r |3 .

We integrate the equations of motion (2)–(3) numerically fromt = 0 to t = 20 for dif-
ferent combinations of the parametersÄ and1t as listed in Table I, exploring a range
of Ä1t = 10−3 · · ·10+3. For each pair of parameters, we use both the inversion algo-
rithm [propagation equations (10), (11), and (13)–(15)] and the Taylor expansion algorithm
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TABLE I

Choice of ParametersΩ and ∆t for the

Numerical Example

Ä= 1 Ä= 100 Ä= 10,000

1t = 0.001 0.001 0.1 10
1t = 0.003 0.003 0.3 30
1t = 0.01 0.01 1 100
1t = 0.03 0.03 3 300
1t = 0.1 0.1 10 1000

Note. Column and row headings areÄ and1t ,
respectively; table entries areÄ1t .

[propagation equations (28)–(30), (11), and (33)–(35)] and compare their performance by
evaluating the following two observables:

A. Maximum relative deviation of the modulus of the radius vectorrÄ,1t (t) from the
“exact” trajectoryrÄ, ex(t), i.e., from the trajectory calculated with the Taylor expansion
algorithm at the smallest step size1t = 0.001:

1r ≡ max
0≤t≤20

∣∣∣∣ |rÄ,1t (t)| − |rÄ, ex(t)|
|rÄ, ex(t)|

∣∣∣∣. (55)

B. Maximum deviation of total energy,

1E ≡ max
0≤t≤20

∣∣∣∣E(t)− E(t = 0)

E(t = 0)

∣∣∣∣, (56)

whereE(t) is the sum of kinetic and potential energy,E(t)= 1
2|v(t)|2− |r(t)|−1.

4.1. Position Deviation∆r

Figure 1 shows the behaviour of the position deviation (55) as a function of1t andÄ
for both integration algorithms. In both algorithms the deviation scales like(1t)2, as is to
be expected for second-order methods. Except for the smallest magnetic fieldÄ= 1, the
Taylor expansion algorithm performs better than the inversion algorithm by several orders
of magnitude, regardless of the size of the time step1t . This difference in quality grows
with increasing magnetic field: Inversion performs the better, theweakerthe magnetic field,
whereas Taylor expansion performs the better, thestrongerthe magnetic field. At weak
magnetic field (Ä= 1), the position deviations of both algorithms are practically the same.
This could have been expected, as we showed in Section 3.2.2 that both algorithms are
equal in the weak field limit.

A closer look at an actual particle trajectory is given in Fig. 2, which shows the time
evolution of|r(t)| atÄ = 1000, calculated with the inversion algorithm at three different
step sizes. The results of the Taylor expansion algorithm for any of these step sizes are
indistinguishable from the1t = 0.001 curve. The inversion algorithm is drastically wrong
at large time steps.
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FIG. 1. Relative deviation of position as defined in (55) as a function of step size1t . Lower panel: inversion
algorithm; upper panel: Taylor expansion algorithm. Lines indicate the magnetic field strength:Ä= 1 (dot dashed),
Ä = 100 (dashed), andÄ= 10,000 (solid).

FIG. 2. Time evolution of the distance from the origin|r(t)| at Ä= 1000. Solid line: Taylor expansion
algorithm with any step size and inversion algorithm at1t = 0.001; wriggly line close to the solid line: inversion
algorithm at1t = 0.03; fringes far from the solid line: inversion algorithm at1t = 0.1.
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4.2. Energy Deviation∆E

For most many-particle MD simulations, the position deviation is not a sensible measure
of integrator accuracy, since the individual particle trajectories behave (deterministically)
chaotically; i.e., small changes in1t can create entirely different particle trajectories when
the simulation time is large compared to the time scale of collisions in the system.

In conservative systems, the relative deviation of the total energy from its initial value
(56) is a useful tool for monitoring the accuracy of the integration algorithm. Figure 3
shows this energy deviation in our example as a function of1t andÄ for both integration
algorithms.

The results are qualitatively the same as for the position deviation:

• The error scaling is proportional to(1t)2 in both cases.
• Taylor expansion improves with growing magnetic field.
• Inversion gets worse with growing magnetic field.
• There is no combination of parameters where inversion outperforms Taylor expansion.

At strong fields Taylor expansion performs better by several orders of magnitude.

FIG. 3. Relative deviation of total energy as defined in (56) as a function of step size1t . Lower panel:
inversion algorithm; upper panel: Taylor expansion algorithm. Lines indicate the magnetic field strength:Ä= 1
(dot dashed),Ä= 100 (dashed), andÄ= 10,000 (solid).



116 SPREITER AND WALTER

5. BEYOND VELOCITY VERLET: EXPANSION TO ARBITRARY ORDER

In some MD applications it may be desirable to use higher order propagation schemes,
such as Runge–Kutta or predictor–corrector methods, instead of the second-order VV. Care
must then be taken to incorporate the magnetic field to at least the same order into the
propagation equations.

It is straightforward to push both the Taylor expansion and the velocity transformation to
an arbitrary orderk, and one finds that the resulting propagation equations obtained from
the two methods are identical at anyk.

For the velocity transformation algorithm, the general result has already been presented
in Eqs. (51)–(52) and (53)–(54). The generalization of the Taylor expansion is conceptually
simple, but rather clumsy to write down; therefore it will be omitted here.

6. CONCLUSION

We have presented a method for incorporating arbitrarily strong static homogeneous
external magnetic fields into the second-order Velocity Verlet propagation algorithm. Our
method can be derived either from a suitable Taylor expansion or from a generalized velocity
transformation. It results in a scheme where the choice of the time step is entirely independent
of the strength of the magnetic field. If desired, the method also allows the development of
analogous schemes for higher order propagation algorithms.

The second-order scheme has been incorporated successfully into various MD simulation
codes, investigating both stopping power [9–11] and radiative recombination [12] of highly
charged ions in magnetized electron plasmas, and electron beam dynamics in electron
coolers [13].

Currently, we are trying to improve the Taylor expansion algorithm by additionally in-
cluding time reversibility and symplecticity conditions into the construction a priori.

APPENDIX A: DERIVATION OF EQUATIONS (33) AND (34)

Equations (33) and (34) can be derived from (22) as follows:
Replacingn by n+ 1 in (27), we get

dn−1

dtn−1
a = dn−1

dtn−1
aC− iÄ

dn−2

dtn−2
a,

which we recursively put into itself(n− 2) times to arrive at

dn−1

dtn−1
a = dn−1

dtn−1
aC− iÄ

{
dn−2

dtn−2
aC− iÄ

[
dn−3

dtn−3
aC · · · − iÄ(aC− iÄv)

]}
.

We obtain the lowest orders of1t by collecting the highest orders ofÄ:

dn−1

dtn−1
a = (−iÄ)nv + (−iÄ)n−1aC+ (−iÄ)n−2 d

dt
aC+

n−1∑
k=2

(−iÄ)n−1−k dk

dtk
aC

= (−iÄ)nv + (−iÄ)n−1aC+ (−iÄ)n−2 d

dt
aC+ O((1t)3−n).
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Thus we have

(1t)n

n!

dn−1

dtn−1
a = (−iÄ1t)n

n!

(
v + aC

−iÄ
+ daC/dt

(−iÄ)2

)
+O((1t)3),

which we put into (22) to get

v(t +1t) = v(t)+1t [aC(t)− iÄv(t)]

+
∞∑

n=2

[
(−iÄ1t)n

n!

(
v(t)+ aC(t)

−iÄ
+ daC(t)/dt

(−iÄ)2

)
+ O((1t)3)

]
= v(t)+1taC(t)− iÄ1tv(t)+ [exp(−iÄ1t)− 1+ iÄ1t ]

×
(
v(t)+ aC(t)

−iÄ
+ daC(t)/dt

(−iÄ)2

)
+ O((1t)3).

Application ofM−1 results in

vx(t +1t) = vx(t) cos(Ä1t)+ vy(t) sin(Ä1t)+ 1

Ä

[−aC
y (t)C(Ä1t)+ aC

x (t) sin(Ä1t)
]

+ 1

Ä2

[
− d

dt
aC

x (t)C(Ä1t)− d

dt
aC

y (t)S(Ä1t)

]
+ O((1t)3)

vy(t +1t) = (like vx(t +1t), exchangex↔ y and replaceÄ→−Ä)

with S andC as defined in Eqs. (31) and (32). The derivativedaC/dt appears only in the
term 1/Ä2[· · ·], which is of the orderO((1t)2). It is therefore sufficient to replacedaC/dt
by the approximationdaC(t)/dt = [aC(t +1t)− aC(t)]/1t + O((1t)1), which leads to
Eqs. (33) and (34).

APPENDIX B: ANALYTIC PROOF OF TRANSFORMATION (50)

First we reorganize Eq. (50) and derive it with respect tot :

v(t +1t) = ṽ(t +1t)−
k∑

n=0

[(
i

Ä

)n+1( dn

dtn
aC(t)

) n∑
m=0

(−iÄ1t)m

m!

]

v̇(t +1t) = ˙̃v(t +1t)−
k∑

n=0

[(
i

Ä

)n+1( dn+1

dtn+1
aC(t)

) n∑
m=0

(−iÄ1t)m

m!

]
.

After putting both equations into Eq. (49), we get

˙̃v(t +1t) = −iÄṽ(t +1t)+
k∑

n=0

(1t)n

n!

dn

dtn
aC(t)

+
k−1∑
n=0

[(
i

Ä

)n+1( dn+1

dtn+1
aC(t)

) n∑
m=0

(−iÄ1t)m

m!

]

+ iÄ
k∑

n=0

[(
i

Ä

)n+1( dn

dtn
aC(t)

) n∑
m=0

(−iÄ1t)m

m!

]
+ O((1t)k+1). (57)

Note that, to withinO((1t)k+1), it suffices to extend the second sum over
∑k−1

n=0 instead
of
∑k

n=0, since the(n= k) term is of the orderO(Ä−k−1)=O((1t)k+1). Equation (57) is
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the equation of the harmonic oscillator, if the three
∑

n terms cancel to withinO((1t)k+1).
Indeed, rewriting

∑k−1
n=0 into

∑k
n=1, we find

k∑
n=0

(1t)n

n!

dn

dtn
aC(t)+

k∑
n=1

[(
i

Ä

)n( dn

dtn
aC(t)

) n−1∑
m=0

(−iÄ1t)m

m!

]

−
k∑

n=0

[(
i

Ä

)n( dn

dtn
aC(t)

) n∑
m=0

(−iÄ1t)m

m!

]

=
k∑

n=0

(1t)n

n!

dn

dtn
aC(t)+

k∑
n=1

(
i

Ä

)n( dn

dtn
aC(t)

)

×
[

n−1∑
m=0

(−iÄ1t)m

m!
−

n∑
m=0

(−iÄ1t)m

m!

]
− aC(t)

=
k∑

n=0

(1t)n

n!

dn

dtn
aC(t)+

k∑
n=1

(
i

Ä

)n( dn

dtn
aC(t)

)[
− (−iÄ1t)n

n!

]
− aC(t) = 0.

APPENDIX C: PHYSICAL INTERPRETATION

In this part we want to illuminate what has been done in Section 3.3.2 from a physical
point of view. Assigning an equivalent electric fieldE = maC/q to the accelerationaC, the
transformation of the velocities in (47) can be interpreted as a special Lorentz transformation
in the non-relativistic limit:

A Lorentz transformation to a coordinate frameK ′moving with a velocityu with respect
to the original frameK will transform the electric and magnetic fields according to [14,
p. 552, here in SI units]:

E′ = γ (E+ u× B)− γ 2

γ + 1

u
c2
(u · E) (58)

B′ = γ
(

B− 1

c2
(u× E)

)
− γ 2

γ + 1

u
c2
(u · B), (59)

whereγ = 1/
√

1− (u/c)2, andc is the velocity of light in vacuum. In the non-relativistic
limit c→∞, Eqs. (58) and (59) simplify into

E′ = E+ u× B (60)

B′ = B. (61)

The aim is to obtain harmonic oscillator equations of motion inK ′. To achieve this, the
electric field components perpendicular toB must vanish inK ′. With B = Bez, we thus
choose the relative velocityu to be

u = E× B
B2
= E× ez

B
.

u is also called “drift velocity.” Equations (60) and (61) now become

E′ = (E · ez)ez = (0, 0, Ez)

B′ = B = (0, 0, B).
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FIG. 4. E×B drift of a negatively charged particle projected onto the plane perpendicular toB in the frames
of referenceK andK ′. The orientation of the plane is chosen to haveex as the drift direction. The motion alongB
is not visible in this projection. Positive charges would rotate clockwise, but their drift direction inK is the same.

The motion inK ′ is made up of a gyration aroundB and an acceleration alongB due to
Ez. Additionally, in the original frameK , a uniform drift alongE × B with velocity u is
superimposed. Figure 4 gives a graphic representation of the particle orbit projected onto
the plane perpendicular toB.
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